بزرگترین وبلاگ تخصصی ، تفریحی ایرانیان

بزرگترین وبلاگ تخصصی ، آموزشی و تفریحی ایرانیان

بزرگترین وبلاگ تخصصی ، تفریحی ایرانیان

بزرگترین وبلاگ تخصصی ، آموزشی و تفریحی ایرانیان

نمایشگر هفت قسمتی یا سون سگمنت (seven segment)

نمونه های سون سگمنت

برای نشان دادن اعداد در ساعتهای دیجیتالی ،چراغ راهنما، ماشین حساب ، ترازوی دیجیتالی و... از یک قطعه به نام seven segment یا هفت قسمتی استفاده می کنند . که اغلب به رنگ سبز و قرمز هستند. این قطعه در واقع هفت LED (دیود نورانی) می باشد که کنار هم بترتیب خاصی قرار گرفته اند و روشن یا خاموش بودن این LED ها اعداد را به ما نشان میدهد . البته امروزه با کاهش قیمت lcd و به علت مصرف پائین آن در دستگاه های مختلف از lcd بیشتر از گذشته استفاده میشود ولی همچنان سون سگمنت استفاده فراوانی در مدارت و دستگاه ها دارد. 

   همان طور که در شکل زیر مشاهده می کنید اگر هرکدام از این هفت قسمت را با حروف  a  b  c  d  e  f  g  در جهت عقربه های ساعت نام گذاری کنیم، آنگاه مثلا برای نمایش عدد "1"  کافیست که فقط قطعه های (سگمت های)  b وc  روشن  بشوند.


ترتیب نام گذاری سگمنتها در سون سگمنت

حال به مدار زیر دقت کنید: 

مداری ساده برای راه اندازی سون سگمت 

اگر شما در ورودی مدار یکی از ارقام 0تا 9 را بصورت باینری وارد کنید ، seven segment عدد شما را به صورت دیجیتالی نمایش می دهد .
ابتدا معادل دودویی (باینری ) عدد خود را بدست آورید .مثلا : معادل باینری 8 ،  1000 می باشد .

عدد دودویی خود را از راست به چپ به ترتیب با A و B و C و D نام گذاری می کنیم رقم A ، کم ارزش ترین ورقم D با ارزش ترین رقم است .
ما نیاز به یک آی سی دیکدر به شماره ۴۵۱۱ داریم . پایه های ورودی آن مربوط به قرار دادن معادل دودویی عدد ما است .خروجی های ان نیز مانند شکل به ورودی های seven segmentمتصل می گردند .
پایه های A,B,C,D را به چهار سوئیچ متصل می کنیم .قرار گرفتن سوئیچ ها در وضعیت بالا وپایین ، صفر ویک بودن رقم مارا مشخص می کند .
 آی سی ۴۵۱۱ ، دیکدر BCD به سون سگمنت نام دارد این دیکدر یک عدد دهدهی به فرم BCD را دریافت نموده و کد هفت قسمتی مربوط به آن را تولید می کند.

در شکل زیر نحوه ی روشن شدن قطعه های (سگمنتهای ) سون سگمنت برای اعداد صفر تا نه را مشاهده میکنیم.

چگونگی نمایش اعداد 0 تا 9

ترانزیستور

سه نفر از دانشمندان لابراتوارهای بل در صدد کشف چیزی بودند که به جای لامپ رادیو به کار برند ولی کوچکتر و محکمتر باشد برق کمتری مصرف کند و دوام بیشتری داشته باشد و برر اثر کار زیاد نسوزد که ناگهان ترانزیستور را کشف کردند که تمام این خصوصیات را به علاوه مزایای بیشتری دارا است.

در 30 ژوئن 1948 دکتر جان باردین و والد براتاین دانشمندان آزمایشگاه تحقیقاتی شرکت بل، واقع در نیویورک خبر اختراع خود را به عموم جهان رساندند. این اختراع ترانزیستور نام گرفت.

یک ترانزیستور که بزرگتر از یک عدس نیست تقریباْ قادر است هر کاری را که لامپ‌های خلاء انجام می‌دادند، انجام دهد. به علاوه کارهایی را هم که این لامپها قادر به انجام آن نبودند انجام می‌دهد. به مرور زمان ترانزیستور جای لامپهای خلاء را گرفت. درست مثل اتومبیل که جای گاریهای قدیمی و اسبی را گرفت.

اگر چه ترانزیستور می تواند کارهای لامپ خلاء را انجام دهد، اما اصلاْ شباهتی به آن ندارد. نه کاتدی دارد و نه شبکه و صفحه ای حتی شکل ظاهری آن هم با لامپ خلاء کاملاْ متفاوت است. ترانزیستور یک وسیله یک سو کننده و نوسان ساز بسیار عالی است و رل مهمی در تمامی صنایع جدید به عهده دارد. ترانزیستور بدون آنکه نیازی به گرم شدن داشته باشد به محض برقراری اتصال و ولتاژ شروع به کار می کند. جریان مصرفی آن، یک هزارم جریان مصرفی لامپ معمولی است. به همین دلیل بسیار ارزانتر و استفاده از آْن ساده‌تر است.

ترانزیستور و مدار کوچک یکپارچه این امکان را به وجود آورد که رادیوهای کوچک جیبی و تلویزیونهای کوچکتر با تصویر بزرگتر ساخته شود. یک صنعت کاملا جدید پا به عرصه وجود گاشت. امروز از برکت دستگاه تنظیم قلب که با ترانزیستور کار می کند قلب بسیاری از بیماران به حال عادی می طپد. نابینایان با کمک دستگاههای ترانزیستوری می توانند موانع را ببینند نوار قلبی بیمار بستری را به وسیله تلفن به کارشناس قبل در هر نقطه دنیا که باشد می فرستند. هواپیماهای جت با سیستم هدایت سبک وزنی مجهز هستند و بالاخره همین مدار بسته یکپارچه است که امکانات سفر بشر به ماه را فراهم نمود.

مصرف ترانزیستور به طور روزافزونی رو به ازدیاد است. در رادیو، تلویزیون، مدارات الکترونیکی، هواپیما، رایانه، پزشکی و موشک ترانزیستور استفاده می‌شود. در ابتدا وجود ترانزیستور باعث شد که ارتباطات تلفنی راه دور، به طور مستقیم و بدون استفاه از اپراتور امکان پذیر شود. برای اولین بار در تاریخ، ارتباط بین دو شهر انگل وود و نیوجرسی با استفاده از ترانزیستور برقرار شد.

امروزه بعد از گذشت حدود نیم قرن ازاختراع ترانزیستور و مشتقات آن کار به جایی رسیده است که هر کس می تواند در منزل رایانه شخصی داشته باشد. ترانزیستور معمولی چیزی بیشتر از دو تکه سیم بسیار کوچک که در یک پولک ساخته شده از ژرمانیم یا سیلیکن قرار داده شده نیست.

تئوری کار ترانزیستور کمی پیچیده و تکنیکی است اما هر چه هست در ساخت آن از خواص نیمه رسانا استفاده شده است که از زمان کشف آن مدت زیادی نمی گذرد.

در نیمه رساناها مثل ژرمانیم و سیلیکن تعداد کمی الکترون حامل جریان وجود دارد شاید یک الکترون در هر یک میلیون اتم. اگر چه این رقم خیلی کوچک است، اما می توان با تغییر ساختمان داخلی مواد، با استفاده از میدانهای الکتریکی این رقم را هزار برابر نمود.

برای روشن تر شدن مفهوم بالا باید ساختمان اتم را کمی بیشتر مطالعه کرد. الکترونهای موجود در مواد نارسانا در مدارهای مختلف بهصورت حلقه ای در اطراف هسته اتم در چرخش هستند و سرعت زیاد و تولید انرژی فراوان سبب می شود که الکترونها نتوانند از مسیر خود منحرف و یا جابجا شوند.

در نتیجه الکترونها امکان برقراری هیچ نوع جریان الکتریکی را نمی یابند. در اجسام نارسانا، پوسته الکترونی و یا باند ظرفیتی آن(آخرین حلقه الکترون دار به دور هسته اتم) از باند هدایت جدا بوده و انرژی بسیار زیادی لازم است تا یک الکترون را از پوسته الکترونی جدا کند و به باند هدایت کننده بفرستد. اما در اجسام رسانا مانند فلزات این پوسته الکترونی یا باند هدایت کننده تداخل پیدا کرده و الکترونهای به راحتی جابجا می شوند.

در یک عنصر نیمه رسانا مانند ژرمانیم و یا سیلیکن الکترونهای موجود در باند ظرفیت نزدیک به باند هدایت کننده قرار ندارند اما می توان با تحریک خارجی آنها را در هم داخل کرد. به طور مثال گرمای محیط و اتاق می تواند تعداد زیادی الکترونهای اتم ژرمانیم را به باند هدایت بفرستد و در اثر این جابجایی حفره هایی در محل های قبلی الکترونها به وجود می آید.

این حفره ها حامل بار مثبت بوده و حاضر به پذیرش الکترونهای عناصر قبلی و مواد دیگر هستند. حفره ها نه تنها الکترونها را می پدیرند بلکه خود به طرف باند هادی حرکت می کنند و در اثر این حرکت جریانی را به وجود می آورند و در عین حال الکترونها را هم در مسیر همین جریان با خود حمل می کنند.

کمترین تحریک خارجی حفره ها را در جهت حفره هایی که از فرار لکترونها به سمت باند هادی به وجود آمده است به حرکت درآورده و این حفره های متحرک علاوه بر اینکه خود تولید جریان می نمایند، الکترونهایی را که از مواد خارجی دیگر به داخل اتم ژرمانیم وارد شده اند حمل کرده و در نتیجه باعث افزایش جریان می شوند.

تشریحات آزمایشگاه تحقیقاتی بل در اول جولای سال 1948 چنین می گوید: کار ترانزیستور بر پایه این حقیقت که الکترونهای موجود در نیمه رساناها می توانند به دو صورت متفاوت جریان را برقرار کنند، قرار دارد. بیشتر الکترونهای موجود در نیمه رسانا اصولاٌ‌ کمکی به برقراری جریان نمی کنند. بلکه آنها در وضعیت ثابتی به هم چسبیده اند.

درست مثل اینکه آنها را با چسب به هم چسبانده باشند. تنها وقتی که یکی از این الکترونها از جای خود خارج شود و یا به طریقی یک الکترون خارجی به مجموعه آنها وارد شود، جریان برقرار می شود. به زبان دیگر اگر یکی از الکترونهای موجود در مجموعه به هم چسبیده از محل خود جدا شود حفره ای که در اثر این جابجایی بوجود می آید مانند حباب هوای موجود در مایع می تواند حرکت کند و جریانی را برقرار سازد.

در ترانزیستوری که از واد نیمه رسانا ساخته شده است به طور معمول فقط در اثر ورود الکترون اضافی شروع به برقراری جریان می کند. جریان از نقطه ورود الکترون که ولتاژ مثبت کمی دارد شروع به حرکت کرده و از محل خروج الکترون خارج می شود ولتاژ نقطه خروجی ولتاژ منفی بیشتری دارد.

بعد از اختراع ترانزیستور و به وجود آمدن انواع گوناگون آن مدارهای مجتمع اختراع شد. به این قطعات آی سی می گویند. آی سی ممکن است گاهی صدها ترانزیستور ساخته شده باشد که داخل یک قطعه 3*1 سانتیمتری قرار گرفته اند. اختراع آی سی تحول عظیم دیگری را در صنعت الکترونیک به وجود آورد. در ادامه تحقیقات و پیشرفتهایی که در زمینه ساخت آی سی به دست آمد، آی سی های برنامه ریزی شده اختراع شدند در یک آی سی برنامه ریزی شده که ابعادی معادل 8*2 سانتیمتر دارد میلیونها حافظه وجود دارد.

اختراع رایانه های خانگی مدیون وجود آی سی هاست که همه آنها به وجود ترانزیستور و اختراع آن مربوط می شود

بار الکتریکی

مقدمه

اگر یک روز خشک و آفتابی روی قالی راه بروید، به محض این که دستتان با دستگیره فلزی تماس پیدا می‌کند، جرقه ایجاد می‌شود. و یا هنگام باریدن باران ، آذرخش و رعد و برق را بارها ملاحظه کرده‌ایم. تمام این موارد حاکی از این است که مقدار زیادی بار الکترونی در اجسام پیرامون ما و حتی در بدن ما ذخیره شده است.

خنثی بودن غالب اشیا مشاهده‌ پذیر و قابل لمس جهان ، از لحاظ الکتریکی ، این واقعیت را تایید می‌کند که تمام اشیا حاوی تعداد زیادی بار الکتریکی مثبت و منفی هستند که چون تعداد این دو نوع بار الکتریکی یکسان است، لذا از نظر آثار خارجی کاملا اثر یکدیگر را بی‌اثر می‌کنند. فقط هنگامی که این توازن زیبای الکتریکی از بین برود، طبیعت آثار بارهای مثبت و منفی آشکار می‌شود. بنابراین زمانی که گفته می‌شود، جسمی باردار است، منظور این است که بار الکتریکی در جسم اندکی نامتوازن شده است.

یک آزمایس ساده

یک میله شیشه‌ای را در دست خود گرفته و با پارچه ابریشمی مالش دهید. عمل مالش سبب می‌شود که مقدار کمی بار الکتریکی از یک جسم به جسم دیگر منتقل شود، و لذا خنثایی الکتریکی آن دو به هم می‌خورد. حال اگر این میله باردار بوسیله یک رشته نخ از نقطه آویزان کنیم وسیله شیشه‌ای دیگری را که به صورت مشابه باردار شده است به این میله نزدیک کنیم، دو میله یکدیگر را می‌رانند. اما اگر یک میله پلاستیکی را که با یک پوست خز باردار شده است به این میله نزدیک کنیم، در این صورت میله پلاستیکی انتهای باردار میله شیشه‌ای آویزان شده را جذب می‌کند.

بنابراین نتیجه می‌گیریم که دو نوع بار الکتریکی وجود دارد. یک نوع از آن ، یعنی بار الکتریکی که روی شیشه مالش داده شده ایجاد می‌شود را بار مثبت و نوع دیگر ، یعنی بار الکتریکی ایجاد شده روی میله بار منفی می‌نامیم همچنین نتیجه می‌گیریم که بارهای الکتریکی همنام یکدیگر را دفع می‌کنند و برعکس بارهای الکتریکی غیر همنام همدیگر را جذب می‌کنند.

تاریخچه انتخاب نام‌های مثبت و منفی

انتخاب نام‌های مثبت و منفی برای بارهای الکتریکی مربوط به بنجامین فرانکلین (Benjamin Franklin) است. او علاوه بر کارهای بزرگی که انجام داد، دانشمندی با شهرت بین المللی بود. فرانکلین واژه‌های بار و باتری را وارد فرهنگ الکتریسیته کرد. بنابراین به رسم احترام شاید بد نباشد که ، هرگاه باتری ماشین حسابمان خالی می‌شود و ما در حین تعویض باتری علامت های + و – را روی باتری مشاهده می‌کنیم، که نشان دهنده قطب‌های مثبت و منفی باتری هستند، به یاد فرانکلین این دانشمند بزرگ عالم فیزیک بیافتیم.

بررسی کمی نیروی موجود میان ، بارهای الکتریکی

در مبحث الکترواستاتیک که بارهای الکتریکی ساکن و یا با سرعت فوق العاده کم مورد بحث قرار می‌گیرد، نیروهایی که بارهای الکتریکی هم‌نام و غیر هم‌نام به یکدیگر وارد می‌کنند توسط قانون کولن مورد بررسی قرار می‌گیرد. با استفاده از این قانون می‌توان علاوه بر مقدار این نیروها ، نوع آنها را از لحاظ جاذبه یا دافعه بودن مشخص نمود.

کاربرد نیروهای الکتریکی بین اجسام باردار

نیروهای الکتریکی موجود بین اجسام باردار در صنعت کاربردهای زیادی دارند، که از آن جمله می‌توان به رنگ افشانی الکتروستاتیکی ، گردنشانی ، دود گیری ، مرکب پاشی چاپگرها و فتوکپی اشاره کرد. به عنوان مثال در یک دستگاه فتوکپی دانه‌های حامل ماشین با ذرات گرد سیاه رنگی که تونر نام دارد، پوشیده می‌شوند. این ذرات بوسیله نیروهای الکتروستاتیکی به دانه حامل می‌چسبند.

ذرات با بار منفی تونر ، سرانجام از دانه‌های حاملشان جدا می‌شوند. جذب این ذرات توسط تصویر با بار مثبت متن مورد نسخه برداری ، که بر روی یک غلتک چرخان قرار دارد، صورت می‌گیرد. آنگاه ورقه کاغذ باردار ذرات تونر را روی غلتک جذب می‌کند و بعد از پخته شدن و نشستن ذرات بر روی کاغذ ، کپی مورد نظر به دست می‌آید

خواص خطوط میدان الکتریکی

خواص عمده خطوط میدان الکتریکی در مسائل الکترواستاتیک:


  • به خاطر اینک میدان الکتریکی در هر نقطه از فضا وجود دارد، در هر نقطه از فضا همواره می توان یک خط میدان کشید.

  • برای توزیع بار های اکتریکی معلوم ، در هر نقطه میدان الکتریکی دارای بزرگی و راستای کاملا مشخصی است. به این معنا که در هر نقطه خط نیروی الکتریکی را فقط می توان در یک راستای معین یعنی بصورت تک خط کشید. به بیان دیگر خط های نیرو همدیگر را قطع نمی کنند.

  • خط های نیرو ممکن است تنها در بار نقطه ای یکدیگر را قطع کنند.

  • خط های نیرو از بار مثبت (نقطه شروع خط های میدان) خارج و به بار منفی (انتهای خطوط نیرو) نزدیک می شوند. خط های میدان الکتریکی در هیچ نقطه ای به جز بار الکتریکی پایان نمی پذیرند (ختم خطوط میدان بر سطوح هادی ها به این دلیل است که بارها در سطوح هادی ها توزیع یافته اند). آنها از بار مثبت به سوی بار منفی اند و می توانند از میان نارسانا ها عبور کنند.

  • چون در داخل رساناها میدان الکتریکی وجود ندارد (صفر است)، بارهای آنها در حالت تعادل به سر می برند. در داخل رساناها خط میدان الکتریکی وجود ندارد. به عبارتی خط های میدان الکتریکی از داخل رسانا ها عبور نمی کنند. و این خطوط از سطح رسانا ها شروع و به سطحشان ختم می شوند.

    چون بارهای الکتریکی نقطه شروع و پایان خطوط میدان الکتریکی هستند، بارهای مثبت روی سطوحی واقع اند که خط میدان شروع می شود. در حالیکه بار های منفی روی سطوحی قراردارند، که خط میدان پایان می پذیرند.


خطوط میدان الکتریکی بر سطح رسانا عمودند:


بدیهی است خطوط میدان الکتریکی راستای نیرو های وارد بر بار را نشان می دهند. اگر این خطوط با سطح رسانا زاویه ای داشته باشند نیرو مؤلفه ای روی سطح خواهد داشت. در این صورت بارها با این مولفه روی سطح جابه جا خواهند شد. از این رو ترازمندی بارهای الکتریکی فقط هنگامی ممکن است. که خطوط میدان در امتداد عمود بر سطح رسانا ی مورد نظر باشند.

پتانسیل الکتریکی در رساناها:


چون داخل هر رسانا میدان الکتریکی صفر است، به عبارتی خطوط میدانی وجود ندارد. بنابر این بین هر دو نقطه از رسانا اختلاف پتاسیل الکتریکی صفر است. بر طبق رابطه زیر: E=U/d بنابراین U=Ed که در آن E میدان الکتریکی ، d فاصله نقطه میدان از مبدا و U اختلاف پتاسیل الکتریکی می باشد. این گفته در تمام نقاط روی رسانا نیز صدق می کند.

در نتیجه سطح رسانا سطح هم پتاسیل است. سطوح تک تک رساناها، سطوح هم پتاسیل است اما احتمال دارد بین دو سطح رسانای مستقل از هم اختلاف پتاسیل وجود داشته باشد.

ساختمان ترانسفورماتور

دید کلی:


ترانسفورماتورها را با توجه به کاربرد و خصوصیات آنها به سه دسته کوچک متوسط و بزرگ دسته بندی کرد. ساختن ترانسفورماتورهای بزرگ و متوسط به دلیل مسایل حفاظتی و عایق بندی و امکانات موجود ، کار ساده ای نیست ولی ترانسفورماتورهای کوچک را می توان بررسی و یا ساخت. برای ساختن ترانسفورماتورهای کوچک ، اجزای آن مانند ورقه آهن ، سیم و قرقره را به سادگی می توان تهیه نمود.

اجزای تشکیل دهنده یک ترانسفورماتور به شرح زیر است؛

هسته ترانسفورماتور:


هسته ترانسفورماتور متشکل از ورقه های نازک است که سطح آنها با توجه به قدرت ترانسفورماتور ها محاسبه می شود. برای کم کردن تلفات آهنی هسته ترانسفورماتور را نمی توان به طور یکپارچه ساخت. بلکه معمولا آنها را از ورقه های نازک فلزی که نسبت به یکدیگر عایق‌اند، می سازند. این ورقه ها از آهن بدون پسماند با آلیاژی از سیلیسیم (حداکثر 4.5 درصد) که دارای قابلیت هدایت الکتریکی و قابلیت هدایت مغناطیسی زیاد است ساخته می شوند.

در اثر زیاد شدن مقدار سیلیسیم ، ورقه‌های دینام شکننده می شود. برای عایق کردن ورقهای ترانسفورماتور ، قبلا از یک کاغذ نازک مخصوص که در یک سمت این ورقه چسبانده می شود، استفاده می کردند اما امروزه بدین منظور در هنگام ساختن و نورد این ورقه ها یک لایه نازک اکسید فسفات یا سیلیکات به ضخامت 2 تا 20 میکرون به عنوان عایق در روی آنها می مالند و با آنها روی ورقه ها را می پوشانند. علاوه بر این ، از لاک مخصوص نیز برای عایق کردن یک طرف ورقه ها استفاده می شود. ورقه های ترانسفورماتور دارای یک لایه عایق هستند.

بنابراین ، در مواقع محاسبه سطح مقطع هسته باید سطح آهن خالص را منظور کرد. ورقه‌های ترانسفورماتورها را به ضخامت های 0.35 و 0.5 میلی متر و در اندازه های استاندارد می سازند. باید دقت کرد که سطح عایق شده ى ورقه های ترانسفورماتور همگی در یک جهت باشند (مثلا همه به طرف بالا) علاوه بر این تا حد امکان نباید در داخل قرقره فضای خالی باقی بماند. لازم به ذکر است ورقه ها با فشار داخل قرقره جای بگیرند تا از ارتعاش و صدا کردن آنها نیز جلوگیری شود.

سیم پیچ ترانسفورماتور :


معمولا برای سیم پیچ اولیه و ثانویه ترانسفورماتور از هادی های مسی با عایق (روپوش) لاکی استفاده می‌کنند. اینها با سطح مقطع گرد و اندازه‌های استاندارد وجود دارند و با قطر مشخص می‌شوند. در ترانسفورماتورهای پرقدرت از هادیهای مسی که به صورت تسمه هستند استفاده می‌شوند و ابعاد این گونه هادی‌ها نیز استاندارد است.

توضیح سیم پیچی ترانسفورماتور به این ترتیب است که سر سیم پیچ‌ها را به وسیله روکش عایقها از سوراخهای قرقره خارج کرد، تا بدین ترتیب سیم ها قطع (خصوصا در سیمهای نازک و لایه‌های اول) یا زخمی نشوند. علاوه بر این بهتر است رنگ روکش‌ها نیز متفاوت باشد تا در ترانسفورماتورهای دارای چندین سیم پیچ ، را به راحتی بتوان سر هر سیم پیچ را مشخص کرد. بعد از اتمام سیم پیچی یا تعمیر سیم پیچهای ترانسفورماتور باید آنها را با ولتاژهای نامی خودشان برای کنترل و کسب اطمینان از سالم بودن عایق بدنه و سیم پیچ اولیه ، بدنه و سیم پیچ ثانویه و سیم پیچ اولیه آزمایش کرد.

قرقره ترانسفورماتور:


برای حفاظ و نگهداری از سیم پیچ‌های ترانسفورماتور خصوصا در ترانسفورماتورهای کوچک باید از قرقره استفاده نمود. جنس قرقره باید از مواد عایق باشد قرقره معمولا از کاغذ عایق سخت ، فیبرهای استخوانی یا مواد ترموپلاستیک می سازند. قرقره هایی که از جنس ترموپلاستیک هستند معمولا یک تکه ساخته می شوند ولی برای ساختن قرقره های دیگر آنها را در چند قطعه ساخت و سپس بر روی همدگر سوار کرد. بر روی دیواره های قرقره باید سوراخ یا شکافی ایجاد کرد تا سر سیم پیچ از آنها خارج شوند.

اندازه قرقره باید با اندازه ى ورقه‌های ترانسفورماتور متناسب باشد و سیم پیچ نیز طوری بر روی آن پیچیده شود. که از لبه های قرقره مقداری پایین تر قرار گیرد تا هنگام جا زدن ورقه‌های ترانسفورماتور ، لایه ى رویی سیم پیچ صدمه نبیند. اندازه قرقره های ترانسفورماتورها نیز استاندارد شده است اما در تمام موارد ، با توجه به نیاز ، قرقره مناسب را می توان طراحی کرد.